Math 221: LINEAR ALGEBRA

Chapter 2. Matrix Algebra
§2-1. Matrix Addition, Scalar Multiplication and Transposition

Le Chen ${ }^{1}$
Emory University, 2021 Spring
(last updated on $01 / 31 / 2021$)

Matrices - Definitions and Basic Properties

Matrix Addition

Scalar Multiplication

The Transpose

Matrices - Definitions and Basic Properties

Matrix Addition

Scalar Multiplication

The Transpose

Matrices - Definitions and Basic Properties

Matrices - Definitions and Basic Properties

Definition

Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $\mathrm{m} \times \mathrm{n}$.

Matrices - Definitions and Basic Properties

Definition

Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $\mathrm{m} \times \mathrm{n}$.
- A row matrix (or row) is a $1 \times \mathrm{n}$ matrix, and a column matrix (or column) is an $\mathrm{m} \times 1$ matrix.

Matrices - Definitions and Basic Properties

Definition

Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $\mathrm{m} \times \mathrm{n}$.
- A row matrix (or row) is a $1 \times \mathrm{n}$ matrix, and a column matrix (or column) is an $\mathrm{m} \times 1$ matrix.
- A square matrix is an $\mathrm{n} \times \mathrm{n}$ matrix.

Matrices - Definitions and Basic Properties

Definition

Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $\mathrm{m} \times \mathrm{n}$.
- A row matrix (or row) is a $1 \times \mathrm{n}$ matrix, and a column matrix (or column) is an $\mathrm{m} \times 1$ matrix.
- A square matrix is an $\mathrm{n} \times \mathrm{n}$ matrix.
- The (i, j)-entry of a matrix is the entry in row i and column j . For a matrix A, the (i, j)-entry of A is often written as a_{ij}.

Matrices - Definitions and Basic Properties

Definition

Let m and n be positive integers.

- An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. Such a matrix is said to have size $\mathrm{m} \times \mathrm{n}$.
- A row matrix (or row) is a $1 \times \mathrm{n}$ matrix, and a column matrix (or column) is an $\mathrm{m} \times 1$ matrix.
- A square matrix is an $\mathrm{n} \times \mathrm{n}$ matrix.
- The (i, j)-entry of a matrix is the entry in row i and column j . For a matrix A, the (i, j)-entry of A is often written as a_{ij}.

General notation for an $\mathrm{m} \times \mathrm{n}$ matrix, A :

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right]=\left[a_{i j}\right]
$$

Remark (Basic Properties)

1. Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.

Remark (Basic Properties)

1. Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.
2. Zero Matrix: an $m \times n$ matrix with all entries equal to zero.

Remark (Basic Properties)

1. Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.
2. Zero Matrix: an $m \times n$ matrix with all entries equal to zero.
3. Addition: matrices must have the same size; add corresponding entries.

Remark (Basic Properties)

1. Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.
2. Zero Matrix: an $m \times n$ matrix with all entries equal to zero.
3. Addition: matrices must have the same size; add corresponding entries.
4. Scalar Multiplication: multiply each entry of the matrix by the scalar.

Remark (Basic Properties)

1. Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.
2. Zero Matrix: an $\mathrm{m} \times \mathrm{n}$ matrix with all entries equal to zero.
3. Addition: matrices must have the same size; add corresponding entries.
4. Scalar Multiplication: multiply each entry of the matrix by the scalar.
5. Negative of a Matrix: for an $\mathrm{m} \times \mathrm{n}$ matrix A , its negative is denoted -A and $-\mathrm{A}=(-1) \mathrm{A}$.

Remark (Basic Properties)

1. Equality: two matrices are equal if and only if they have the same size and the corresponding entries are equal.
2. Zero Matrix: an $\mathrm{m} \times \mathrm{n}$ matrix with all entries equal to zero.
3. Addition: matrices must have the same size; add corresponding entries.
4. Scalar Multiplication: multiply each entry of the matrix by the scalar.
5. Negative of a Matrix: for an $\mathrm{m} \times \mathrm{n}$ matrix A, its negative is denoted -A and $-\mathrm{A}=(-1) \mathrm{A}$.
6. Subtraction: for $\mathrm{m} \times \mathrm{n}$ matrices A and $\mathrm{B}, \mathrm{A}-\mathrm{B}=\mathrm{A}+(-1) \mathrm{B}$.

Matrices - Definitions and Basic Properties

Matrix Addition

Scalar Multiplication

The Transpose

Matrix Addition

Matrix Addition

Definition

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]$ be two $\mathrm{m} \times \mathrm{n}$ matrices. Then $\mathrm{A}+\mathrm{B}=\mathrm{C}$ where C is the $\mathrm{m} \times \mathrm{n}$ matrix $\mathrm{C}=\left[\mathrm{c}_{\mathrm{ij}}\right]$ defined by

$$
c_{i j}=a_{i j}+b_{i j}
$$

Matrix Addition

Definition

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]$ be two $\mathrm{m} \times \mathrm{n}$ matrices. Then $\mathrm{A}+\mathrm{B}=\mathrm{C}$ where C is the $\mathrm{m} \times \mathrm{n}$ matrix $\mathrm{C}=\left[\mathrm{c}_{\mathrm{ij}}\right]$ defined by

$$
c_{i j}=a_{i j}+b_{i j}
$$

Example

$$
\text { Let } \mathrm{A}=\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right], \mathrm{B}=\left[\begin{array}{rr}
0 & -2 \\
6 & 1
\end{array}\right] . \text { Then, }, ~ \begin{aligned}
\mathrm{A}+\mathrm{B} & =\left[\begin{array}{rr}
1+0 & 3+-2 \\
2+6 & 5+1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
8 & 6
\end{array}\right]
\end{aligned}
$$

Theorem (Properties of Matrix Addition)
Let A, B and C be $\mathrm{m} \times \mathrm{n}$ matrices. Then the following properties hold.

Theorem (Properties of Matrix Addition)
Let A, B and C be $\mathrm{m} \times \mathrm{n}$ matrices. Then the following properties hold.

1. $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ (matrix addition is commutative).

Theorem (Properties of Matrix Addition)
Let A, B and C be $\mathrm{m} \times \mathrm{n}$ matrices. Then the following properties hold.

1. $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ (matrix addition is commutative).
2. $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$ (matrix addition is associative).

Theorem (Properties of Matrix Addition)
Let A, B and C be $\mathrm{m} \times \mathrm{n}$ matrices. Then the following properties hold.

1. $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ (matrix addition is commutative).
2. $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$ (matrix addition is associative).
3. There exists an $m \times n$ zero matrix, 0 , such that $A+0=A$. (existence of an additive identity).

Theorem (Properties of Matrix Addition)
Let A, B and C be $\mathrm{m} \times \mathrm{n}$ matrices. Then the following properties hold.

1. $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ (matrix addition is commutative).
2. $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$ (matrix addition is associative).
3. There exists an $m \times n$ zero matrix, 0 , such that $A+0=A$. (existence of an additive identity).
4. There exists an $m \times n$ matrix $-A$ such that $A+(-A)=0$. (existence of an additive inverse).

Matrices - Definitions and Basic Properties

Matrix Addition

Scalar Multiplication

The Transpose

Scalar Multiplication

Scalar Multiplication

Definition

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an $\mathrm{m} \times \mathrm{n}$ matrix and let k be a scalar. Then $\mathrm{kA}=\left[\mathrm{k} \mathrm{a}_{\mathrm{ij}}\right]$.

Scalar Multiplication

Definition

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an $\mathrm{m} \times \mathrm{n}$ matrix and let k be a scalar. Then $\mathrm{kA}=\left[\mathrm{k} \mathrm{a}_{\mathrm{ij}}\right]$.

Example
Let $A=\left[\begin{array}{rrr}2 & 0 & -1 \\ 3 & 1 & -2 \\ 0 & 4 & 5\end{array}\right]$.

Scalar Multiplication

Definition

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an $\mathrm{m} \times \mathrm{n}$ matrix and let k be a scalar. Then $\mathrm{kA}=\left[\mathrm{k} \mathrm{a}_{\mathrm{ij}}\right]$.

Example
Let $\mathbf{A}=\left[\begin{array}{rrr}2 & 0 & -1 \\ 3 & 1 & -2 \\ 0 & 4 & 5\end{array}\right]$.
Then

$$
\begin{aligned}
3 \mathrm{~A} & =\left[\begin{array}{lll}
3(2) & 3(0) & 3(-1) \\
3(3) & 3(1) & 3(-2) \\
3(0) & 3(4) & 3(5)
\end{array}\right] \\
& =\left[\begin{array}{rrr}
6 & 0 & -3 \\
9 & 3 & -6 \\
0 & 12 & 15
\end{array}\right]
\end{aligned}
$$

Theorem (Properties of Scalar Multiplication)
Let A, B be $\mathrm{m} \times \mathrm{n}$ matrices and let $\mathrm{k}, \mathrm{p} \in \mathbb{R}$ (scalars). Then the following properties hold.

Theorem (Properties of Scalar Multiplication)
Let A, B be $\mathrm{m} \times \mathrm{n}$ matrices and let $\mathrm{k}, \mathrm{p} \in \mathbb{R}$ (scalars). Then the following properties hold.

1. $\mathrm{k}(\mathrm{A}+\mathrm{B})=\mathrm{kA}+\mathrm{kB}$. (scalar multiplication distributes over matrix addition).

Theorem (Properties of Scalar Multiplication)
Let A, B be $\mathrm{m} \times \mathrm{n}$ matrices and let $\mathrm{k}, \mathrm{p} \in \mathbb{R}$ (scalars). Then the following properties hold.

1. $k(A+B)=k A+k B$. (scalar multiplication distributes over matrix addition).
2. $(\mathrm{k}+\mathrm{p}) \mathrm{A}=\mathrm{kA}+\mathrm{pA}$.
(addition distributes over scalar multiplication).

Theorem (Properties of Scalar Multiplication)
Let A, B be $\mathrm{m} \times \mathrm{n}$ matrices and let $\mathrm{k}, \mathrm{p} \in \mathbb{R}$ (scalars). Then the following properties hold.

1. $\mathrm{k}(\mathrm{A}+\mathrm{B})=\mathrm{kA}+\mathrm{kB}$. (scalar multiplication distributes over matrix addition).
2. $(\mathrm{k}+\mathrm{p}) \mathrm{A}=\mathrm{kA}+\mathrm{pA}$.
(addition distributes over scalar multiplication).
3. $\mathrm{k}(\mathrm{pA})=(\mathrm{kp})$ A. (scalar multiplication is associative).

Theorem (Properties of Scalar Multiplication)
Let A, B be $\mathrm{m} \times \mathrm{n}$ matrices and let $\mathrm{k}, \mathrm{p} \in \mathbb{R}$ (scalars). Then the following properties hold.

1. $\mathrm{k}(\mathrm{A}+\mathrm{B})=\mathrm{kA}+\mathrm{kB}$. (scalar multiplication distributes over matrix addition).
2. $(\mathrm{k}+\mathrm{p}) \mathrm{A}=\mathrm{kA}+\mathrm{pA}$.
(addition distributes over scalar multiplication).
3. $\mathrm{k}(\mathrm{pA})=(\mathrm{kp}) \mathrm{A}$. (scalar multiplication is associative).
4. $1 \mathrm{~A}=\mathrm{A}$. (existence of a multiplicative identity).

Example

$$
2\left[\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right]+4\left[\begin{array}{rr}
-2 & 1 \\
3 & 0
\end{array}\right]-\left[\begin{array}{rr}
6 & 8 \\
1 & -1
\end{array}\right]=
$$

Example

$$
2\left[\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right]+4\left[\begin{array}{rr}
-2 & 1 \\
3 & 0
\end{array}\right]-\left[\begin{array}{rr}
6 & 8 \\
1 & -1
\end{array}\right]=\left[\begin{array}{rr}
-16 & -4 \\
13 & 3
\end{array}\right]
$$

Example

$$
2\left[\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right]+4\left[\begin{array}{rr}
-2 & 1 \\
3 & 0
\end{array}\right]-\left[\begin{array}{rr}
6 & 8 \\
1 & -1
\end{array}\right]=\left[\begin{array}{rr}
-16 & -4 \\
13 & 3
\end{array}\right]
$$

Problem

Let A and B be $\mathrm{m} \times \mathrm{n}$ matrices. Simplify the expression

$$
2[9(\mathrm{~A}-\mathrm{B})+7(2 \mathrm{~B}-\mathrm{A})]-2[3(2 \mathrm{~B}+\mathrm{A})-2(\mathrm{~A}+3 \mathrm{~B})-5(\mathrm{~A}+\mathrm{B})]
$$

Example

$$
2\left[\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right]+4\left[\begin{array}{rr}
-2 & 1 \\
3 & 0
\end{array}\right]-\left[\begin{array}{rr}
6 & 8 \\
1 & -1
\end{array}\right]=\left[\begin{array}{rr}
-16 & -4 \\
13 & 3
\end{array}\right]
$$

Problem
Let A and B be $m \times n$ matrices. Simplify the expression

$$
2[9(\mathrm{~A}-\mathrm{B})+7(2 \mathrm{~B}-\mathrm{A})]-2[3(2 \mathrm{~B}+\mathrm{A})-2(\mathrm{~A}+3 \mathrm{~B})-5(\mathrm{~A}+\mathrm{B})]
$$

Solution

$$
\begin{aligned}
& 2[9(\mathrm{~A}-\mathrm{B})+7(2 \mathrm{~B}-\mathrm{A})]-2[3(2 \mathrm{~B}+\mathrm{A})-2(\mathrm{~A}+3 \mathrm{~B})-5(\mathrm{~A}+\mathrm{B})] \\
= & 2(9 \mathrm{~A}-9 \mathrm{~B}+14 \mathrm{~B}-7 \mathrm{~A})-2(6 \mathrm{~B}+3 \mathrm{~A}-2 \mathrm{~A}-6 \mathrm{~B}-5 \mathrm{~A}-5 \mathrm{~B}) \\
= & 2(2 \mathrm{~A}+5 \mathrm{~B})-2(-4 \mathrm{~A}-5 \mathrm{~B}) \\
= & 12 \mathrm{~A}+20 \mathrm{~B}
\end{aligned}
$$

Matrices - Definitions and Basic Properties

Matrix Addition

Scalar Multiplication

The Transpose

Matrix Transpose

Matrix Transpose

Definition

If A is an $\mathrm{m} \times \mathrm{n}$ matrix, then its transpose, denoted A^{T}, is the $\mathrm{n} \times \mathrm{m}$ whose $\mathrm{i}^{\text {th }}$ row is the $\mathrm{i}^{\text {th }}$ column of $\mathrm{A}, 1 \leq \mathrm{i} \leq \mathrm{n}$; i.e., if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$, then

$$
\mathrm{A}^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ij}}\right]^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ji}}\right]
$$

i.e., the (i, j)-entry of A^{T} is the (j, i)-entry of A .

Matrix Transpose

Definition

If A is an $\mathrm{m} \times \mathrm{n}$ matrix, then its transpose, denoted A^{T}, is the $\mathrm{n} \times \mathrm{m}$ whose $\mathrm{i}^{\text {th }}$ row is the $\mathrm{i}^{\text {th }}$ column of $\mathrm{A}, 1 \leq \mathrm{i} \leq \mathrm{n}$; i.e., if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$, then

$$
\mathrm{A}^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ij}}\right]^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ji}}\right]
$$

i.e., the (i, j)-entry of A^{T} is the (j, i)-entry of A .

Theorem (Properties of the Transpose of a Matrix)
Let A and B be $m \times n$ matrices, C be a $n \times p$ matrix, and $r \in \mathbb{R}$ a scalar. Then

Matrix Transpose

Definition

If A is an $\mathrm{m} \times \mathrm{n}$ matrix, then its transpose, denoted A^{T}, is the $\mathrm{n} \times \mathrm{m}$ whose $\mathrm{i}^{\text {th }}$ row is the $\mathrm{i}^{\text {th }}$ column of $\mathrm{A}, 1 \leq \mathrm{i} \leq \mathrm{n}$; i.e., if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$, then

$$
\mathrm{A}^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ij}}\right]^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ji}}\right]
$$

i.e., the (i, j)-entry of A^{T} is the (j, i)-entry of A .

Theorem (Properties of the Transpose of a Matrix)
Let A and B be $m \times n$ matrices, C be a $n \times p$ matrix, and $r \in \mathbb{R}$ a scalar. Then

1. $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$

Matrix Transpose

Definition

If A is an $\mathrm{m} \times \mathrm{n}$ matrix, then its transpose, denoted A^{T}, is the $\mathrm{n} \times \mathrm{m}$ whose $\mathrm{i}^{\text {th }}$ row is the $\mathrm{i}^{\text {th }}$ column of $\mathrm{A}, 1 \leq \mathrm{i} \leq \mathrm{n}$; i.e., if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$, then

$$
\mathrm{A}^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ij}}\right]^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ji}}\right]
$$

i.e., the (i, j)-entry of A^{T} is the (j, i)-entry of A .

Theorem (Properties of the Transpose of a Matrix)
Let A and B be $m \times n$ matrices, C be a $n \times p$ matrix, and $r \in \mathbb{R}$ a scalar. Then

1. $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$
2. $(\mathrm{rA})^{\mathrm{T}}=r \mathrm{~A}^{\mathrm{T}}$

Matrix Transpose

Definition

If A is an $\mathrm{m} \times \mathrm{n}$ matrix, then its transpose, denoted A^{T}, is the $\mathrm{n} \times \mathrm{m}$ whose $\mathrm{i}^{\text {th }}$ row is the $\mathrm{i}^{\text {th }}$ column of $\mathrm{A}, 1 \leq \mathrm{i} \leq \mathrm{n}$; i.e., if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$, then

$$
\mathrm{A}^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ij}}\right]^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ji}}\right]
$$

i.e., the (i, j)-entry of A^{T} is the (j, i)-entry of A .

Theorem (Properties of the Transpose of a Matrix)
Let A and B be $m \times n$ matrices, C be a $n \times p$ matrix, and $r \in \mathbb{R}$ a scalar. Then

1. $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$
2. $(\mathrm{rA})^{\mathrm{T}}=r \mathrm{~A}^{\mathrm{T}}$
3. $(\mathrm{A}+\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}$

Matrix Transpose

Definition

If A is an $\mathrm{m} \times \mathrm{n}$ matrix, then its transpose, denoted A^{T}, is the $\mathrm{n} \times \mathrm{m}$ whose $\mathrm{i}^{\text {th }}$ row is the $\mathrm{i}^{\text {th }}$ column of $\mathrm{A}, 1 \leq \mathrm{i} \leq \mathrm{n}$; i.e., if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$, then

$$
\mathrm{A}^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ij}}\right]^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ji}}\right]
$$

i.e., the (i, j)-entry of A^{T} is the (j, i)-entry of A .

Theorem (Properties of the Transpose of a Matrix)
Let A and B be $m \times n$ matrices, C be a $n \times p$ matrix, and $r \in \mathbb{R}$ a scalar. Then

1. $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$
2. $(\mathrm{rA})^{\mathrm{T}}=r \mathrm{~A}^{\mathrm{T}}$
3. $(\mathrm{A}+\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}$
4. $(\mathrm{AC})^{\mathrm{T}}=\mathrm{C}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$

Matrix Transpose

Definition

If A is an $\mathrm{m} \times \mathrm{n}$ matrix, then its transpose, denoted A^{T}, is the $\mathrm{n} \times \mathrm{m}$ whose $\mathrm{i}^{\text {th }}$ row is the $\mathrm{i}^{\text {th }}$ column of $\mathrm{A}, 1 \leq \mathrm{i} \leq \mathrm{n}$; i.e., if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$, then

$$
\mathrm{A}^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ij}}\right]^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ji}}\right]
$$

i.e., the (i, j)-entry of A^{T} is the (j, i)-entry of A .

Theorem (Properties of the Transpose of a Matrix)
Let A and B be $\mathrm{m} \times \mathrm{n}$ matrices, C be $\mathrm{a} \mathrm{n} \times \mathrm{p}$ matrix, and $\mathrm{r} \in \mathbb{R}$ a scalar. Then

1. $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$
2. $(\mathrm{rA})^{\mathrm{T}}=r \mathrm{~A}^{\mathrm{T}}$
3. $(\mathrm{A}+\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}$
4. $(A C)^{T}=C^{T} A^{T}$

To prove each these properties, you only need to compute the (i, j)-entries of the matrices on the left-hand side and the right-hand side.

Matrix Transpose

Definition

If A is an $\mathrm{m} \times \mathrm{n}$ matrix, then its transpose, denoted A^{T}, is the $\mathrm{n} \times \mathrm{m}$ whose $\mathrm{i}^{\text {th }}$ row is the $\mathrm{i}^{\text {th }}$ column of $\mathrm{A}, 1 \leq \mathrm{i} \leq \mathrm{n}$; i.e., if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$, then

$$
\mathrm{A}^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ij}}\right]^{\mathrm{T}}=\left[\mathrm{a}_{\mathrm{ji}}\right]
$$

i.e., the (i, j)-entry of A^{T} is the (j, i)-entry of A .

Theorem (Properties of the Transpose of a Matrix)
Let A and B be $\mathrm{m} \times \mathrm{n}$ matrices, C be $\mathrm{a} \mathrm{n} \times \mathrm{p}$ matrix, and $\mathrm{r} \in \mathbb{R}$ a scalar. Then

1. $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$
2. $(\mathrm{rA})^{\mathrm{T}}=r \mathrm{~A}^{\mathrm{T}}$
3. $(\mathrm{A}+\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}$
4. $(A C)^{T}=C^{T} A^{T}$

To prove each these properties, you only need to compute the (i, j)-entries of the matrices on the left-hand side and the right-hand side. And you can do it!

Problem

Find the matrix A if $\left(A+3\left[\begin{array}{rrr}1 & -1 & 0 \\ 1 & 2 & 4\end{array}\right]\right)^{T}=\left[\begin{array}{ll}2 & 1 \\ 0 & 5 \\ 3 & 8\end{array}\right]$.

Problem

Find the matrix A if $\left(A+3\left[\begin{array}{rrr}1 & -1 & 0 \\ 1 & 2 & 4\end{array}\right]\right)^{T}=\left[\begin{array}{ll}2 & 1 \\ 0 & 5 \\ 3 & 8\end{array}\right]$.

Solution

$$
\left[\left(\mathrm{A}+3\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 2 & 4
\end{array}\right]\right)^{\mathrm{T}}\right]^{\mathrm{T}}=\left[\begin{array}{ll}
2 & 1 \\
0 & 5 \\
3 & 8
\end{array}\right]^{\mathrm{T}}
$$

Problem

Find the matrix A if $\left(A+3\left[\begin{array}{rrr}1 & -1 & 0 \\ 1 & 2 & 4\end{array}\right]\right)^{T}=\left[\begin{array}{ll}2 & 1 \\ 0 & 5 \\ 3 & 8\end{array}\right]$.

Solution

$$
\begin{aligned}
{\left[\left(A+3\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 2 & 4
\end{array}\right]\right)^{\mathrm{T}}\right]^{\mathrm{T}} } & =\left[\begin{array}{ll}
2 & 1 \\
0 & 5 \\
3 & 8
\end{array}\right]^{\mathrm{T}} \\
\mathrm{~A}+3\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 2 & 4
\end{array}\right] & =\left[\begin{array}{lll}
2 & 0 & 3 \\
1 & 5 & 8
\end{array}\right]
\end{aligned}
$$

Problem

Find the matrix A if $\left(A+3\left[\begin{array}{rrr}1 & -1 & 0 \\ 1 & 2 & 4\end{array}\right]\right)^{T}=\left[\begin{array}{ll}2 & 1 \\ 0 & 5 \\ 3 & 8\end{array}\right]$.

Solution

$$
\begin{aligned}
{\left[\left(\mathrm{A}+3\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 2 & 4
\end{array}\right]\right)^{\mathrm{T}}\right]^{\mathrm{T}} } & =\left[\begin{array}{ll}
2 & 1 \\
0 & 5 \\
3 & 8
\end{array}\right]^{\mathrm{T}} \\
\mathrm{~A}+3\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 2 & 4
\end{array}\right] & =\left[\begin{array}{lll}
2 & 0 & 3 \\
1 & 5 & 8
\end{array}\right] \\
\mathrm{A} & =\left[\begin{array}{lll}
2 & 0 & 3 \\
1 & 5 & 8
\end{array}\right]-3\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 2 & 4
\end{array}\right]
\end{aligned}
$$

Problem

Find the matrix A if $\left(A+3\left[\begin{array}{rrr}1 & -1 & 0 \\ 1 & 2 & 4\end{array}\right]\right)^{T}=\left[\begin{array}{ll}2 & 1 \\ 0 & 5 \\ 3 & 8\end{array}\right]$.

Solution

$$
\begin{aligned}
{\left[\left(\mathrm{A}+3\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 2 & 4
\end{array}\right]\right)^{\mathrm{T}}\right]^{\mathrm{T}} } & =\left[\begin{array}{ll}
2 & 1 \\
0 & 5 \\
3 & 8
\end{array}\right]^{\mathrm{T}} \\
\mathrm{~A}+3\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 2 & 4
\end{array}\right] & =\left[\begin{array}{lll}
2 & 0 & 3 \\
1 & 5 & 8
\end{array}\right] \\
\mathrm{A} & =\left[\begin{array}{lll}
2 & 0 & 3 \\
1 & 5 & 8
\end{array}\right]-3\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 2 & 4
\end{array}\right] \\
\mathrm{A} & =\left[\begin{array}{rrr}
-1 & 3 & 3 \\
-2 & -1 & -4
\end{array}\right]
\end{aligned}
$$

Definition

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an $\mathrm{m} \times \mathrm{n}$ matrix. The entries $\mathrm{a}_{11}, \mathrm{a}_{22}, \mathrm{a}_{33}, \ldots$ are called the main diagonal of A .

Definition

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an $\mathrm{m} \times \mathrm{n}$ matrix. The entries $\mathrm{a}_{11}, \mathrm{a}_{22}, \mathrm{a}_{33}, \ldots$ are called the main diagonal of A .

Definition (Symmetric Matrices)

The matrix A is called symmetric if and only if $\mathrm{A}^{\mathrm{T}}=\mathrm{A}$. Note that this immediately implies that A is a square matrix.

Definition
Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an $\mathrm{m} \times \mathrm{n}$ matrix. The entries $\mathrm{a}_{11}, \mathrm{a}_{22}, \mathrm{a}_{33}, \ldots$ are called the main diagonal of A .

Definition (Symmetric Matrices)
The matrix A is called symmetric if and only if $\mathrm{A}^{\mathrm{T}}=\mathrm{A}$. Note that this immediately implies that A is a square matrix.

Examples

$$
\left[\begin{array}{rr}
2 & -3 \\
-3 & 17
\end{array}\right],\left[\begin{array}{rrr}
-1 & 0 & 5 \\
0 & 2 & 11 \\
5 & 11 & -3
\end{array}\right],\left[\begin{array}{rrrr}
0 & 2 & 5 & -1 \\
2 & 1 & -3 & 0 \\
5 & -3 & 2 & -7 \\
-1 & 0 & -7 & 4
\end{array}\right]
$$

are symmetric matrices, and each is symmetric about its main diagonal.

Definition

An $\mathrm{n} \times \mathrm{n}$ matrix A is said to be skew symmetric if $\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$.

Definition
An $\mathrm{n} \times \mathrm{n}$ matrix A is said to be skew symmetric if $\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$.

Example (Skew Symmetric Matrices)

$$
\left[\begin{array}{rr}
0 & 2 \\
-2 & 0
\end{array}\right],\left[\begin{array}{rrr}
0 & 9 & 4 \\
-9 & 0 & -3 \\
-4 & 3 & 0
\end{array}\right]
$$

Definition
An $\mathrm{n} \times \mathrm{n}$ matrix A is said to be skew symmetric if $\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$.

Example (Skew Symmetric Matrices)

$$
\left[\begin{array}{rr}
0 & 2 \\
-2 & 0
\end{array}\right],\left[\begin{array}{rrr}
0 & 9 & 4 \\
-9 & 0 & -3 \\
-4 & 3 & 0
\end{array}\right]
$$

Problem

Show that if A is a square matrix, then $\mathrm{A}-\mathrm{A}^{\mathrm{T}}$ is skew-symmetric.

Definition
An $\mathrm{n} \times \mathrm{n}$ matrix A is said to be skew symmetric if $\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$.

Example (Skew Symmetric Matrices)

$$
\left[\begin{array}{rr}
0 & 2 \\
-2 & 0
\end{array}\right],\left[\begin{array}{rrr}
0 & 9 & 4 \\
-9 & 0 & -3 \\
-4 & 3 & 0
\end{array}\right]
$$

Problem

Show that if A is a square matrix, then $\mathrm{A}-\mathrm{A}^{\mathrm{T}}$ is skew-symmetric.

Solution
We must show that $\left(A-A^{T}\right)^{T}=-\left(A-A^{T}\right)$.

Definition
An $\mathrm{n} \times \mathrm{n}$ matrix A is said to be skew symmetric if $\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$.

Example (Skew Symmetric Matrices)

$$
\left[\begin{array}{rr}
0 & 2 \\
-2 & 0
\end{array}\right],\left[\begin{array}{rrr}
0 & 9 & 4 \\
-9 & 0 & -3 \\
-4 & 3 & 0
\end{array}\right]
$$

Problem

Show that if A is a square matrix, then $\mathrm{A}-\mathrm{A}^{\mathrm{T}}$ is skew-symmetric.

Solution
We must show that $\left(\mathrm{A}-\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=-\left(\mathrm{A}-\mathrm{A}^{\mathrm{T}}\right)$. Using the properties of matrix addition, scalar multiplication, and transposition

$$
\left(\mathrm{A}-\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}-\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}-\mathrm{A}=-\left(\mathrm{A}-\mathrm{A}^{\mathrm{T}}\right) .
$$

